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Collision 

The way of gas molecules passing through the cell interface 
depends on the cell resolution and particle mean free path 

  

Computation: a description of flow motion in a    
                           discretized  space and time 
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 governing equations (micro):  
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  governing equations (macro): 

Fundamental Physical Laws in Discretized Space 
f     :  gas distribution function， 
W   :  conservative macroscopic variables  
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For the update of conservative flow variables, we only need 
to know the fluxes across a cell interface！ 
PDE-based modeling：use PDE’s local solution to model 
the physical process of gas molecules passing through the 
cell interface 



The  physical modeling of particles distribution function at  a cell 
interface 
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: constructed according to 
Chapman-Enskog expansion 

Previous approach for continuum flows 
(ignore small scale non-equilibrium effect) 



Unified Gas-kinetic Scheme (UGKS) 
  

(Be able to capture equilibrium and non-equilibrium flow distributions in different domains) 
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UGKS Scheme: 

 






 





 


1

2/1

2/1

1 1
)]()([

1
,2/1,2/1,

1

,

n

n

j

j

n

n

t

t

x

x
kj

t

t
kj

n

kj

n

kj dxdt
fg

x
dttuftuf

x
ff



The flux evaluation is based on the integral solution of the kinetic model: 
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where                  can be evaluated using continuum particle velocity 
space (same as kinetic-NS), and            is evaluated in a discretized velocity space. 
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Update of conservative variables (marco): 

No need to  use  
Chapman-Enskog expansion 

Updated 
(UGKS) 

Update of distribution function (micro): 
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  taking conservative moments: 

 






 





 


1

2/1

2/1

1 1
)]()([

1
,2/1,2/1,

1

,

n

n

j

j

n

n

t

t

x

x
kj

t

t
kj

n

kj

n

kj dxdt
fg

x
dttuftuf

x
ff



     mass, momentum and energy 
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(micro-scale) 

(macro-scale) 

UGKS Numerical Steps 

Scale 
up 

Scale 
   down 

1ng
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The update of gas distribution function becomes 

with the solution: 
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Numerical path: 



shock structure calculations 
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Mach 8 and 9 argon shock structure vs. experiments 



13 

Distribution functions inside M=25 helium shock structure 











Shock thickness: Sutherland  





Deduced experimental inflow conditions 



Flow passing through a cylinder 



M=5.0, Kn=0.1 

DSMC solution provided by Q.H. Sun 
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M=5, Kn=0.1 



25 

M=5, Kn=1.0 



Hypersonic Flow Computations  





M=20, Kn=0.01 



M=20, Kn=1 



Micro-flows 
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Pressure Driven Poiseuille Flow: Kn=0.1 

NS 



32 

Rayleigh Problem 



Unified DOM 



34 

Knudsen number：Kn=10 

micro-mesh.avi
Macro-caivity_kn10.0.avi
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Kn=1.0  (transitional ) 
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Kn=0.075   (near continuum) 



Re=1000  (continuum) UGKS 
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U-velocity V-velocity 



Thermal creep flows 
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Thermal Creep Flow 



H L 

Thermal Creep Flow 
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Kn=0.64 

Kn=0.064 
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UGKS 

DSMC 

H=200nm Kn=0.32 
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UGKS  vs  DSMC at Kn=0.064 
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UBGK 

DSMC 

T1 

Flow arising from temperature discontinuities at Kn=0.1.avi


UGKS 

Full Boltzmann 
solution 



Sound wave propagation in simple gases 



Absorption 



Speed 



UGKS with moving mesh in physical space  
           and particle velocity adaptation  



Hypersonic flight in rarefied 
environment  



Typical particle velocity distribution 
function 



In the front of the ellipse (upwind) 



Behind the ellipse (downwind) 



Mesh size in velocity space 
 

760 （AUGKS） vs 64×64 （UGKS） 

Efficiency  



Expansion flow from a nozzle 

Density ratio 
 
 10000 



Three stages of the expansion process 

• Free expansion stage 

• Jet-like stage 

• Deceleration stage 



The flow field during free expansion 
stage 



The jet-like flow field 



The flow field during deceleration 
stage 



Velocity of the nozzle Force exerted on the nozzle 

The  red circles indicate the jet-like stage 



Crookes radiometer 



The origin of radiometric force in 
the Crookes radiometer 

• Type 

– Pressure 

– Shear stress 

• Location 

– Long arm 

– Lateral  side (tip) 



The pressure torque distribution along 
the long arm for Kn = 0.1 



Peak shift 

• The maximum of radiometric force and the 
maximum of the rotary velocity appear at 
different Knudsen number (Ota, 2001) 



Peak shift reproduced by the semi-
rational formula 

Ota Present study 



[1] Olga I. Rovenskaya a, Alexey Ph. Polikarpov b, Irina A. Graur, “Comparison of the numerical solutions of the full Boltzmann and 
S-model kinetic equations for gas flow through a slit”, Computers and Fluids, in press (2012). 
[2] Lei Wu, Craig White, Thomas J. Scanlon, Jason M. Reese and Yonghao Zhang, “ Deterministic numerical solutions of the space-
inhomogeneous Boltzmann equation using the fast spectral method”, to appear in Journal of Computational Physics (2013). 
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Physical modeling in different scales  

Boltzmann Eqs. 

Navier-Stokes 

Euler 

quantum 

MD 

Flow description depends on the 
scale of the discretized space 

From Boltzmann to NS, there should have a continuous spectrum of governing equations 
between them 
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The integral solution provides a multi-scale dynamic modeling: 
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Kinetic scale Hydrodynamic scale 

Traditional CFD methodology meets great difficulty 



Numerical Principles 

All PDEs have their own valid scales: 
Boltzmann: mean free path, NS: dissipative structures, Euler: convective wave structures,…  
 

Numerical PDE:  A direct discretization of PDE is problematic because 
the cell size can be hardly matched with the PDE’s modeling scale. 
Then, truncation error, modified equations, …, appear in the hope to 
get a “reliable” scheme. 
 
Direct modeling in discretized space (including effect of cell size 
resolution in the description of physical flows):  
PDE-based modeling:  is to use PDE’s evolution solution to design the 
numerical scheme, and this solution is not limited to PDE’s modeling 
scale, i.e., the evolution solution of the kinetic model is valid when time 
𝑡 ≫ 𝜏. Certainly, particle-based modeling is fine as well, such as DSMC, 
but it is difficult to develop a scheme across multiple scales. 
 



Control Volume 
tx  ,

 The above physical process covers the whole spectrum 
from free molecular transport to NS solutions. 

PDE-based Modeling 

Fundamental governing equations in discretized space:  
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micro 

macro 



Conclusion 
• Similar to the DSMC method, the unified gas-kinetic scheme 

(UGKS) is a PDE-based  direct physical modeling with the 
update of both macroscopic and microscopic flow variables. 

• The un-splitting treatment (transport + collision) of 
molecules passing through a cell interface plays an 
important role to capture both hydrodynamic and kinetic 
scale flow physics. 

• The use of adaptive particle velocity space will make the 
equation based simulation method be competitive to DSMC.  

• For low speed micro-flows, the unified gas-kinetic scheme 
(UGKS) is a reliable and efficient method in comparison with 
any other method.  

 
 

 


